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Abstract: In the last ten years, artificial intelligence (AI) techniques have been applied in archaeology.
The ArchAIDE project realised an AI-based application to recognise archaeological pottery. Pottery
is of paramount importance for understanding archaeological contexts. However, recognition of
ceramics is still a manual, time-consuming activity, reliant on analogue catalogues. The project
developed two complementary machine-learning tools to propose identifications based on images
captured on-site, for optimising and economising this process, while retaining key decision points
necessary to create trusted results. One method relies on the shape of a potsherd; the other is based
on decorative features. For the shape-based recognition, a novel deep-learning architecture was
employed, integrating shape information from points along the inner and outer profile of a sherd.
The decoration classifier is based on relatively standard architectures used in image recognition. In
both cases, training the algorithms meant facing challenges related to real-world archaeological data:
the scarcity of labelled data; extreme imbalance between instances of different categories; and the
need to take note of minute differentiating features. Finally, the creation of a desktop and mobile
application that integrates the AI classifiers provides an easy-to-use interface for pottery classification
and storing pottery data.
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1. Introduction

Over the last decade, artificial intelligence (AI) has become widespread across science
and technology. Born in 1955 [1], the different facets of AI have gone through waves of
innovation before becoming ubiquitous. Machine learning (ML) algorithms were devel-
oped in the 1980s [2], but their use has become common only within the last decade with
the ability to produce huge datasets (Big Data), and with the advent of neural networks.
Traditionally, AI addresses tasks such as reasoning, knowledge representation, planning,
learning, natural language processing (NLP), perception, and robotics. Methods include
statistics, computational intelligence, and symbolic AI (AI with human-readable repre-
sentations). The tools used in these tasks consist mainly in mathematical optimisation,
statistical tools, and artificial neural networks (ANNs).

Within archaeology, the usefulness of AI is now formally explored. Five to ten years
ago, ML algorithms and neural networks were concepts unknown to archaeologists; now,
there are sessions dedicated to AI at archaeological conferences. AI techniques have been
applied in various field of archaeology, especially for (i) the discovery of archaeological
sites; (ii) the recognition and reassembling of archaeological pottery; (iii) the extraction of
text and name entity recognition (NER); (iv) the analysis of human remains; (v) murals and
graffiti drawings; and (vi) robotics. In general, archaeology benefits from AI when a vast
amount of data needs to be analysed; and when complicated, subjective, highly specialised,
and time-consuming activities are required (such as in the identification of finds).
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Artificial neural networks (ANNs) are used to manage some of the severe problems
that manifest in archaeological data: incompleteness, noisiness, messiness, and non-linear
relationships between the data. Techniques such as (i) multilayer perceptron network
(MLP) [3], which provides a supervised learning technique called backpropagation that
permits finding the weights of a network [4]; (ii) probabilistic neural network (PNN) [5]
that works with a kernel density estimation; (iii) convolutional neural network (CNN) [6],
a group of neural networks used in computer vision, in which the connection between
artificial neurons resembles the structure of the visual cortex; and (iv) self-organizing
feature map (SOM) that employs an unsupervised competitive learning method to obtain
dimensionality reduction are applied.

Some early AI archaeological implementations focussed on the classification, seri-
ation, and analysis of material culture, such as artistic representations [7,8], use-wear of
prehistoric tools [9], historical glass artefacts, and ancient coins [10]. The application of
ML and deep learning in archaeology underwent a decisive turn towards the detection of
archaeological sites during the last years. Examples in the detection and exploration of
terrestrial and marine archaeological sites come from various projects. The Archäoprog-
nose Brandenburg project [11] adopted a combined PNN and SOM solution to develop
archaeological predictive modelling for identifying the possible location of archaeological
sites in Brandenburg (Germany). In the Dzungaria Landscape project [12], CNN was
employed to detect Iron Age tombs in the Eurasian steppe, to find archaeological sites
and related toponyms in historical cartography [13], and to identify pottery fragments
in drone imagery [14]. A random forest algorithm has been used for the detection of
archaeological mounds in the Cholistan (Pakistan) employing a large-scale collection of
multitemporal synthetic-aperture radar and multispectral images [15] and using aerial
laser scanning (ALS, lidar) data to identify megalithic funerary structures in the region of
Carnac (France) [16].

Supervised learning approaches (machine and deep learning) for the automated
classification of three-dimensional (3D) architectural components (columns, facades, and
more) in large datasets have also been recently explored [17]. Arch-I-Scan realised a
prototype system for the detection and classification of whole pottery vessels [18].

Virtual reconstruction of artefacts from fragments has been handled in different
contexts, such as automatic puzzle solving. Recently, clustering techniques were designed
to group fragments for re-building the original image by ordering the pieces identified.
An advanced variation of puzzle-solving is the reassembling of archaeological artefacts.
Some research teams proposed approaches based on 3D models using the information
encapsulated in the thickness of the potsherd [19], or adopting a comparison of vectors and
surfaces, performed linearly, applying an appositely developed algorithm (Fragmatch) [20].
The solving of archaeological puzzles using both 3D models of fragments and images
has also been explored by the GRAVITATE project [21]. Reconstruction of potsherds and
text has been achieved on a group of ostraka with demotic inscriptions, focusing on 2D
reconstruction techniques using a specific multilayer architecture of deep neural network
(DNN) called Siamese neural network, which distinguishes similar pairs [22].

Archaeological texts are often reported into epigraphical inscriptions. Frequently, in-
scriptions are damaged, fragmentary, and illegible, making it difficult for NLP. Pythia [23]
is an automated ancient text restoration system that recovers missing characters from dam-
aged text using DNN. More generally, NLP techniques have been employed in archaeology
from the 1990s [24] to identify the process model from the text [25], in iconographic repre-
sentation research, for numismatic [26,27] and artwork studies [28], in zooarchaeology [29],
and to make grey literature more accessible [30].

AI has been applied to the study of human remains. Bewes et al. [31] developed a
neural network for identifying the sex of individuals starting with 3D reconstructions of
skulls based on CT scans. The transfer learning technique, based on pre-trained GoogLeNet,
coupled with backpropagation, was applied. Czibula et al. [32] compared two supervised
regression models—one based on an ANN and the other based on genetic algorithms
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(GA)—to estimate stature from bone measurements. The ANN achieved a better result
than the GA.

Geochemical [33] and archaeobotanical [34] research is now setting up different
projects to develop automated identification procedures, which can boost traditionally
arduous and time-consuming techniques.

ML techniques were used for automated petroglyph image segmentation with interac-
tive classifier fusion [35], in reconstructing fresco segments [36], and with remote sensing
in the Mogao Caves [37].

The use of robots has been explored by projects related to underwater explorations
and museums. As for the first, the VENUS project [38] used AUVs/ROVs (autonomous
underwater/remotely operated vehicles) coupled with data acquisition techniques (sonar
and photogrammetry) for underwater exploration of shipwrecks aimed at data collection
and extraction of 3D models. A similar approach has been used to map the floor of the
Mediterranean Sea around the island of Malta [39]. As for the second, many cultural
institutions and museums have proposed AI solutions to engage visitors, using chatbots
and robots to understand questions, communicate responses, create paths in the museum to
create a more in-depth understanding, and develop software to automate the organisation
of exhibitions. Robovie-R ver.2 [40] is a humanoid robot that reproduces the description
of artworks with movements akin to those of a human guide, using face recognition, and
response methods implemented with AI. Minerva software [41] uses a multiagent system
developed using distributed AI for grouping artefacts according to the user’s criteria and
arranges them in the rooms of a museum.

The present paper presents a short overview of the ArchAIDE project (Section 2), ex-
plains the methods adopted for developing the shape-based and appearance (decoration)-
based recognition of potsherd through one picture taken from a mobile device or a camera
(Section 3), and discusses the results obtained and the steps followed for improving the
application (Section 4). Section 5 describes the importance of data availability and mostly
open access to research data for training the neural networks. It also points out how
sharing the AI algorithm as open source code is essential in an open science environment.
Section 6 exemplifies the facility of use of the ArchAIDE system through its mobile applica-
tion. The final section, Section 7, discusses the difficulties encountered and the project’s
future development.

2. ArchAIDE Project

Within this scenario, the ArchAIDE project (2016-2019) developed two different deep
neural networks (DNNs) devoted to recognising pottery through images using a mobile
device. One of the networks is dedicated to image recognition (also called appearance-
based recognition, for pottery decorations), the other to shape recognition (for pottery
types). ArchAIDE was thought of as a response to well-defined archaeological needs.
During archaeological investigations, pottery is the most common type of finding, and
its analysis and classification allow the understanding of much information related to
the archaeological contexts, from the chronology to the function, and social structures.
Ceramic identification is a repetitive and time-consuming activity based on the archaeol-
ogist’s expertise and is usually made by matching potsherds to exemplars in catalogues
of archaeological typologies (Figure 1). The ArchAIDE project operated for optimising
this identification process, developing a new system that simplifies the practice of pottery
recognition in archaeology, through an AI approach, and without replacing the knowledge
of domain specialists. On the contrary, ArchAIDE assured archaeologists’ role at the centre
of the decision-making process within the identification workflow.

To achieve its goals, the ArchAIDE project created (i) a digital comparative collection for
pottery types [42], decorations [43], and stamps [44], combining digital collections, digitised
paper catalogues, and data acquired through photo campaigns; (ii) a semi-automated system
for paper catalogues’ digitisation [45]; (iii) a multilingual thesaurus of descriptive pottery
terms, mapped to the Getty Art and Architecture Thesaurus, which includes French, German,
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Spanish, Catalan, Portuguese, English, and Italian [46]; (iv) two distinct neural networks for
appearance-based and shape-based recognition (partially discussed here [47,48]); and (v)
an app connected to the AI classifiers to support archaeologists in recognising potsherds
during excavation and post-excavation analysis, with an easy-to-use interface.

Heritage 2021, 4 FOR PEER REVIEW  4 
 

 

 
Figure 1. Archaeologists must spend much time classifying thousands of pottery sherds. Ar-
chAIDE meets archaeologists’ needs creating a portable, user-friendly tool for mobile devices that 
can be used everywhere, speeding up the classification phase both in the field and during work in 
the warehouses. 

To achieve its goals, the ArchAIDE project created (i) a digital comparative collection 
for pottery types [42], decorations [43], and stamps [44], combining digital collections, 
digitised paper catalogues, and data acquired through photo campaigns; (ii) a semi-auto-
mated system for paper catalogues’ digitisation [45]; (iii) a multilingual thesaurus of de-
scriptive pottery terms, mapped to the Getty Art and Architecture Thesaurus, which in-
cludes French, German, Spanish, Catalan, Portuguese, English, and Italian [46]; (iv) two 
distinct neural networks for appearance-based and shape-based recognition (partially dis-
cussed here [47,48]); and (v) an app connected to the AI classifiers to support archaeolo-
gists in recognising potsherds during excavation and post-excavation analysis, with an 
easy-to-use interface. 

The ArchAIDE system is based on a pipeline where archaeologists take a picture of 
a potsherd and send it to the specifically trained classifier, which returns five suggested 
matches from the comparative collections. Once the correct type is identified, the infor-
mation is linked to the photographed sherd and stored within a database that can be 
shared online (Figure 2).  

Figure 1. Archaeologists must spend much time classifying thousands of pottery sherds. ArchAIDE
meets archaeologists’ needs creating a portable, user-friendly tool for mobile devices that can be used
everywhere, speeding up the classification phase both in the field and during work in the warehouses.

The ArchAIDE system is based on a pipeline where archaeologists take a picture of
a potsherd and send it to the specifically trained classifier, which returns five suggested
matches from the comparative collections. Once the correct type is identified, the informa-
tion is linked to the photographed sherd and stored within a database that can be shared
online (Figure 2).
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3. Materials and Methods

The set of tools developed by the project addresses two scenarios: (i) when the pottery
is undecorated, the identification relies on the shape (i.e., profile’s geometry) of the sherd;
(ii) if decorations (i.e., colours and patterns) are present, classification is usually based on
those, since they can provide a more reliable diagnostic than the shape of the sherd.

The first goal of ArchAIDE was to realise a proof of concept. The selection of pottery
classes was based on the need (i) to find types that relied on shape-based and decoration-
based characteristics for identification; and (ii) to realise a system that could have a real-
world implementation. The decision was made to choose four classes: amphorae manufac-
tured throughout the Roman world between the late 3rd century BCE and the early 7th
century CE (Figure 3a); Roman Terra Sigillata manufactured in Italy, Spain, and South Gaul
between the 1st century BCE and the 3rd century CE; Majolica produced in Montelupo
Fiorentino (Italy) between 14th and 18th century; and medieval and post-medieval Majolica
from Barcelona and Valencia (Spain) (Figure 3b).
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Figure 3. The Roman amphorae (a) and Majolica of Montelupo Fiorentino (b) are two of the main
test classes used to train the system, for their peculiar characteristics useful to stress the algorithms
for shape-based, and appearance recognition, respectively. Thanks to the collaborations of different
institutions, museums, research groups, and colleagues worldwide, it was possible to collect photos
of thousands of sherds. In this figure, part of the sherds were from the Roman site of Spoletino
(Viterbo-Italy), and fragments stored in the Museum of Ceramic in Montelupo Fiorentino warehouse.
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3.1. Shape-Based Recognition

Since the goal was aiding archaeologists in the field, we tackled classifying a potsherd
profile based on a single picture of it. A significant challenge in building the necessary
AI tools is that one cannot obtain sufficient real-world samples to train neural networks.
Furthermore, given its variability, an archaeological dataset would contain only a small
fraction of the possible sherds. Instead, we defined each class (i.e., a pottery type) by two-
dimensional drawings of the profile of the complete vessel. Whereas the drawing describes
the geometry of the entire vessel’s profile, a real potsherd is a part of it (many times a tiny
one) which contains minimal information about the shape as a whole. Consequently, the
recognition tool was designed as a two-phase process, where the classification algorithm
was first developed on one dataset and then validated on other datasets for different types
of pottery. Separation of datasets enables avoiding an overfit due to multiple hypothesis
testing, thus enabling better confidence in the results. The dataset used in the first phase was
composed of 435 sketches of Terra Sigillata Italica (TSI), grouped into 65 standardised top-
level classes (i.e., the top-level types defined in the Conspectus catalogue [49]). From these
drawings, class-balanced synthetic data (i.e., 3D models) were created, while reserving the
real-world sherds’ outlines to be used solely for testing. The real-world outlines were traced
from potsherd photographed in archaeological warehouses throughout Europe using the
dedicated ArchAIDE mobile app (see Section 6). The real-world test dataset contained
240 extracted outlines from 29 different top-level classes. Nevertheless, the classifier was
trained on all 65 classes.

On the dataset side, 3D models of each pottery type were reconstructed by automati-
cally extracting the profile of the entire vessel from 2D drawing, and by rotating the profile
around its revolution axis and shattering it to derive synthetic sherds [45] (Figure 4). To
circumvent the computation overhead of 3D reconstruction, we imagined circles going
around the vertical axis for each point in the profile, then generated a random 3D plane,
and calculated how all the circles intersect the plane, connecting the intersection points
from the circles along the profile to generate the fracture face. To create a more realistic
synthetic fracture, we reduced its size to match real potsherds’ dimensions [48].
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The network was trained based on the distinctive characteristics of archaeological
profiles, including the requirement to divide the inner and the outer profile of the sherd,
the relevance of the position of the points along the profile outline, the intrinsic noise
in the tracing procedure, and the requirement to overcome sub-optimal data acquisition
processes [48] (Figure 5). The architecture of ArchAIDE’s classifier is similar to Point-
Net [50]; it uses pooling to achieve a representation that is invariant to the order of the
elements, following a local computation at each element. Such pooling is the only way to
obtain this invariance under mild conditions [50,51]. Novel applications regarding shape
classification include PointNet ++ [50], and PointCNN [52]. While most of the preceding
work has been directed on 3D point clouds identification, ArchAIDE network encoded
a 2D outline and took advantage of the information that arises from the position of the
points along the outline.
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In the ranking, the OutlineNet’s real-world top 2 classification rate was 1.5 times the
top 1 classification rate when training the model, suggesting that the classes were easily
confused. Ablation experiments (i.e., a method to assesses the performance of the NN
by removing specific components, to understand their contribution to the model) showed
that separation of inner and outer profiles, angle information, group-hot encoding (i.e., the
conversion of categorical data in order to be processed by a NN), and adaptive sampling
each add to the overall top-K performance, even when changes in the top 1 accuracy were
small. Similarly, augmentation also contributed to the top-K result, without significant
impact on the top 1 accuracy. Top-K processing finds a list of K results with the highest
scores, assuming that all the K results are independent. In practice, some of the top-K results
obtained can be very similar to each other or redundant. A plausible reason is that all these
modifications to the model and training are less meaningful for samples that are carefully
collected and informative, and mainly impact the accuracy of the lower-quality samples.

This fits with its function as a reference tool for pottery specialists who would be glad
to evaluate a shortlist of results as part of the obligatory expert validation but would be
disappointed to use a tool where the correct result is often completely omitted.

Following the first phase development on the Terra Sigillata Italica (TSI) dataset, three
other datasets were added. The first was a supplementary TSI dataset that includes the
profiles of additional 96 sherds belonging to 11 classes that were not considered during
the test; the other two contain Terra Sigillata Hispanica (TSH) and South Gaulish Terra
Sigillata (TSSG) data. These also describe Terra Sigillata pottery, but there is no intersection
in classes between TSI, TSH, and TSSG.
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On the new TSI test set, using the same model from phase I (without any retrain-
ing/adaptations), the accuracy values obtained were even better than the phase I dataset.
Additionally, for the datasets containing new typologies, similar or better accuracy (mea-
sured relative to the number of classes) was obtained using precisely the same training
method, without any adaptations (Figure 6).
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3.2. Appearance-Based Recognition

Pottery decorations can be classified based on the presence and combination of colours,
the type of patterns, the areas that are decorated, and more. In this case, a transfer-learning
technique was applied, as happens in domains characterised by data’s paucity. A pre-
trained version of the ResNet-50 network [53] trained on the ImageNet collection [54]
was employed. Images were scaled to a 224 × 224 to fit the expected input dimensions
of the ResNet model. To train the network to work with varying amounts of decora-
tions/background, we added augmented versions of each image to the original dataset,
scaling it to four different sizes. On each scaled image, we created three versions: unflipped,
horizontally flipped, and vertically flipped. All these images were cropped, leaving just
the centre square. As a result, 12 images from each original one were obtained, increasing
the dataset from around 8000 images to about 100,000 images.

In the first testbeds, the most challenging factor that affected identification was varying
illumination. To improve robustness, we simulated different white balance, brightness,
and contrast adjustments. The luminosity (“brightness”) of all the pixels within each
image was multiplied using a randomised factor to simulate different lighting conditions.
An analogous random multiplicative factor was applied to each channel in the image
compensating the white balance setups; every red/green/blue channel was multiplied by
a different random constant factor, to change the ratio between the colours.



Heritage 2021, 4 148

Moreover, the imaging conditioned (i.e., background and ruler) varied significantly,
leading to an inherent bias. The foreground was extracted automatically from the training
images using the GrabCut algorithm to avoid this conditioning [55] (Figure 7).
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4. Results

The development of the two neural networks was extremely challenging. In particular,
we faced: (i) the paucity of real-world data to train the networks; (ii) the partiality of
the potsherd in comparison to the whole object and its high variability due to a random
breakage process; (iii) the non-informativeness of a large portion of the sherds, among
both the synthetic and real-world data; (iv) the similarity between types which can cause
ambiguity in the classification; and (v) the noisiness of the acquisition process due to the
procedure for extracting and scaling the profile from potsherd images (shape), and the
variability in illumination and background (decorations).

Most neural network loss functions would be prone to sacrificing challenging classes
to improve the average accuracy across all classes. Nonetheless, a reference tool is more
valuable when it achieves less obvious identification; i.e., it can also recognise less common
types. For tackling the heterogeneous and unbalanced nature of the data, the algorithm was
trained adopting a novel weighting technique that considers both the error of each ground
truth class and false positives in each class. Ground truth means checking the neural
network results for accuracy against the real world. This reweighting scheme addressed
the difficulty of correctly classifying a sample from a given class and the frequency of
the current classification of a sample. The achieved results show quite good recognition
accuracy in the face of these challenges.

The full development of the algorithm was implemented through a two-phase process.
In the first phase, the method was applied to one dataset of potsherds of one specific
family; in the second, the same method, pipeline and parameters, were used to three
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additional datasets. With the Phase-I dataset (composed of 65 classes), the identification of
almost 74% of the sherds within the top 10 results was achieved. Adding the three new
(supplementary Terra Sigillata Italica dataset, Terra Sigillata Hispanica (TSH), and South
Gaulish Terra Sigillata (TSSG)) datasets, without any change of the pipeline, we reached
81%, 68%, and 60% top 10 accuracy for 65, 98, and 94 classes, respectively. The ranking is
essential in information retrieval because it appoints the relative order between the classes,
ranking classes with a high degree of relevancy higher than those with a low degree of
relevancy. Hence, the ArchAIDE system works as a reliable reference tool to be used in the
field, allowing to narrow the list of relevant types to be considered for each potsherd.

The evaluation of the shape-based identification was done both on the captured real-
world data (used in the testing phase), and in an end-to-end fashion, with users capturing
new photos, annotating them, and using the classification algorithm.

The end-to-end evaluation was done using 381 different pictures of sherds of TSI,
taken from 42 different types (out of 65 types). Most images were taken with a smartphone
or a tablet (as would be the case in the field), with only 25 pictures using a regular camera.
The average mobile-app top 5 accuracy was 50.8% and the top1 accuracy was 18.9%. This
is slightly lower than 22.0% top 1 accuracy and 57.9% top 5 accuracy reported in our
evaluation, but these results are still useful for archaeologists.

The results reported on the testing data are reported in Table 1:

Table 1. Decoration-based identification.

Accuracy TSI (# 1) TSI (# 2) TSH TSSG

Top 1 22.0% 30.5% 27.6% 14.5%
Top 2 32.7% 43.6% 40.6% 25.0%
Top 5 57.9% 62.8% 58.4% 41.9%

The assessment of the decoration recognition was achieved using on both the mobile
and desktop applications. The results for the classification are reported in Table 2:

Table 2. Comparison between mobile and desktop performances.

Accuracy Mobile Performance Desktop Performance

Top 1 55.2% 51.0%
Top 5 83.8% 77.2%

The evaluation was performed on 49 different genres (out of 84) using more than
820 images taken both on mobile devices (700 by phones and tablet) and with a camera
(120). Results show that the accuracy, in both the applications, was not affected by the
lighting, giving similar results both with artificial and natural light.

5. Open ArchAIDE

As previously discussed, one of the most complex aspects of the practical application
of AI is not the development of the algorithms themselves, but the creation of the dataset
used to train them. Archaeology is widely digitised, but rarely datafied [56]. Unfortunately,
datafication is essential because AI algorithms need data, preferably Big Data, that is also
FAIR (findable, accessible, interoperable, and reusable).

The ArchAIDE neural networks also rely on a vast amount of data from digital
collections, paper catalogues (necessary to the creation of digital comparative collections
included in the reference database) and photography campaigns (for the creation of training
datasets). The project has used two main digital collections: the “Roman Amphorae: a digital
resource” [57], created by Simon Keay and David Williams of the University of Southampton
and published as open data on the Archaeology Data Service, that includes the principal
types of roman amphorae between the late 3rd century BCE and the early 7th century CE;
and the “CERAMALEX” database [58], a proprietary database of the German and French
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excavations in Alexandria, Schedia, and Marea, available thanks to partnership with the
University of Cologne. In addition to these two collections, printed catalogues in the form
of books and papers have been digitised to populate ArchAIDE database.

For achieving the correct management of the material which falls under copyright or
database protection, the EU directives on Copyright (2001/29/EC) and Database protection
(96/9/EC) were analysed [59]. The scientific research exception permitted the implemen-
tation of the project, to the extent justified by a non-commercial purpose mentioning the
source and the authors’ name. For training the algorithm, multiple photo campaigns were
also carried out in several archaeological warehouses. The aim was to obtain a dataset of
images for all the chosen ceramic classes. Considering that it has not been possible to collect
all the data in one warehouse, this task requested a significant effort, involving more than
30 different institutions in Austria, Italy, and Spain. Other images were collected by asso-
ciates’ participation, who sent pictures of their assemblages from many countries. Detailed
guidelines were prepared for helping the consortium partners and project associates to take
images of sherd profiles that could fit the training of the neural network. All this procedure
which included the finding, classifying, photographing, and creating a digital storage was
very time-consuming, as images of at least ten different potsherds for every ceramic type
were needed to provide enough training information for the algorithm. It appeared that not
every top-level type and sub-type could be represented. In some instances, the presence of
rare types and the significant number of unclassified sherds inside the warehouses made
it impossible to reach the amount needed. Overall, 3498 sherds were photographed for
training the shape-based recognition model. For appearance-based recognition, a dataset
of 13,676 pictures was collected through multiple photography campaigns.

Participating in H2020 open data pilot, ArchAIDE was committed to creating sus-
tainable outputs where the project held the copyright. Unfortunately, not all the collected
data could be disseminated as open data. The research exceptions allowed by the EU
Directives [59] do not mean the ArchAIDE project automatically holds the copyright to
the newly digitised or remixed data. Negotiation with copyright holders will be necessary
for making these data available outside the project. ArchAIDE is able to demonstrate that
paper catalogues, once digitised, can be actively reused, also many years later from the first
publication. This opens to the possibility of reaching an agreement with publishers and
other data providers for making their resources available in new ways, “with a tangible
benefit (seeing their data in use within the app), thus furthering the long-term discourse
around making research data open and accessible” [60]. Instead, data owned by the project,
i.e., multilingual vocabularies, videos created by the project, as well as the 2D and 3D
models created from the ADS Roman Amphorae digital resource [57], were made available
for download [46] (Figure 8). The ArchAIDE archive contains 2D vector drawings in SVG
format and interactive 3D models navigable through a 3DHOP 3D viewer [61], that can also
be downloaded for 3D printing (Figure 9). These models exemplify an excellent standard
of best-practice reuse. When the Roman Amphorae digital resource was deposited in 2005,
creating automated 2D and 3D models for training a neural network could not have been a
use envisioned. As 2D and 3D models were produced for each type included in the digital
resource, it was possible to link the two archives, amplifying their mutual usefulness.
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It was also hoped the thousands of photos taken by the project for training the al-
gorithms might result in new comparative collections that could be deposited as open
research data into the ArchAIDE archive. Still, in many European countries, copyright
on cultural heritage is very restrictive and did not allow us to make available the images
of potsherds taken by ArchAIDE partners in national and regional collections. Showing
the usefulness of these data within the ArchAIDE application might help convince cul-
tural heritage national institutions to move towards more open data policies. Finally, the
source code and neural network models are publicly available as open source in a GitHub
repository [62] to allow re-use and future development by other researchers. Although
all the data collected by users are, by definition, private and are not published, and all
system components are designed to comply with this privacy statement, the system offers
the option to publish the data as open data. Sponsoring the open data philosophy and
EU open data pilot, ArchAIDE suggests to the user to share the data with the community,
leaving each user the choice to do that or not.

6. The App

Mobile and desktop applications were developed to make ArchAIDE fully operational.
Their functionality was designed taking into account the workflow of pottery analysis,
from the finding in the field to post-excavation examination, considering the environmental
context in which these activities are performed (warehouse, remote places, etc.) and
the related constraints. Through continuous feedback from the archaeological companies
involved in the consortium and external associates who collaborated with the project [63], it
was possible to collect suggestions on automating this workflow, improving the design, and
generating new prototypes. In the end, various needs have been taken into consideration,
from the use as a recognition tool, to collecting and storing data in the form of digital
assemblages. The design prioritised intuitive access and ease of use (Figure 10). The final
result is a digital ecosystem in which mobile and server-side applications interact through
an API server mediating all the communications and activities.

The ArchAIDE Desktop Web Server and the ArchAIDE mobile application provide
search and retrieval tools to access the reference database and the classification functionali-
ties. The choice for satisfying this requirement fell on Liferay 7.1, an open-source Portal
Server technology widely used to build medium/large web portals. The reference database
and the desktop website implemented a single sign-on infrastructure based on CAS (cen-
tral authentication server) to share the same user archive between the app, the reference
database, and the desktop website. The Shape Recognition and Decoration Recognition
Model servers implement the pottery type prediction as a unique service. In the first case,
the input is an SVG file representing a sherd fracture’s outer and inner profile. In the
second one, the input is an image of the sherd surface. The result, returned as a JSON array,
is a list of ranked ceramic type (or decoration) identifiers paired with a score of relevancy.
The ArchAIDE mobile application also gives access to the “my sites” area, dedicated to
registered users where it is possible to store information about sites and assemblages. The
mobile application was designed for allowing the use in lack of internet connectivity, such
as in storehouses or remote rural areas. In these environments, the app permits storing new
images of potsherds or browsing the reference database. The app registers the information
locally when offline and then saves the information into the server online (Figure 11).

To sum up, access to the reference database and the automatic classification tools are
available for all the users without any registration. Registration is mandatory for storing
and managing information about sites/assemblages/sherds (e.g., classification information
obtained from the classifier, or provenance of a sherd that belongs to an assemblage from
a site) that is stored in the local memory of the device and on the ArchAIDE server. The
ArchAIDE App is free and available for Android and iOS platforms, respectively on Google
Play Store and Apple Store.
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7. Discussion

ArchAIDE has shown the ability of artificial intelligence in identifying archaeological
pottery, but it has also pointed out some of the challenges that AI applications in archae-
ology have to deal with. The first is related to the amount of data necessary for training
neural networks. Despite popular perception, one of the most complex aspects of the
practical application of AI is not the development of the algorithm itself, but the creation of
the dataset used to train it. Archaeology is widely digitised, but rarely datafied [64], and
data availability represents a critical aspect of AI applications. AI algorithms need data,
preferably Big Data, that is also FAIR (findable, accessible, interoperable, and reusable),
as well as consolidated, persistent digital infrastructures. However, this is not enough
because vast amounts of data are often unavailable in archaeology, and frequently, data is
unusable due to copyright or legislation. Collections accessible in digital format, both for
open re-use and as comparative data for AI applications, like the open databases of the
Samian Research of the Roman-Germanic Central Museum [65], the Roman Open Data [66],
or the already mentioned Roman Amphorae: a digital resource [57] are extremely rare.
Furthermore, producing the necessary training and comparative data is time-consuming
and demanding, and until this can be addressed, the ability for archaeology to use AI to
answer research questions will be irregular, producing low-quality results. In the case of
ArchAIDE, this resulted in a massive effort to digitise the paper catalogues and collect
primary data through time-consuming photo-campaigns. These allowed us to gather
around 17,000 pictures, on the whole, considering a minimum threshold of 10 real-world
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potsherd images for each type and 100 real-world potsherd images for each decoration
genre respectively for the shape-based and appearance-based algorithm.

The second was that it was not reasonable to design an image recognition system that
could identify pottery using contemporaneously decoration-based and shape-based char-
acteristics. It appeared evident that it was necessary to develop two different algorithms. If
needed, ceramic classes for which both shape data and appearance data are available can
be recognised using the two different classifiers to obtain more detailed results. Moreover,
the project represents a proof of concept, and new experiments could be conducted with
other ceramic classes.

The third was that the archaeological classification is not based on shape or decoration
alone. Archaeologists and especially pottery specialists as domain experts use other
considerations such as locations, the composition of the assemblage, fabric, and more as
elements that permit filtering out some classes. At present, these elements are not captured
in ArchAIDE scheme. The fabric is not recognisable through a picture taken by a mobile
device, given to the technological and methodological limitation. Nevertheless, fabric
and other elements can be employed to filter the information on top of the class ranking
predicted by ArchAIDE. Consequently, we can assume that the gap between ArchAIDE and
human archaeologists in distinguishing ceramic types based on their shape or decoration, is
probably much lower than the achieved error rates. Moreover, the error rates are probably
exaggerated due to problems related to the correct labelling of potsherds. These have
been gathered based on the labelling that is documented in catalogues and established
collections, even if, in some cases, mistakes about the exact provenance of the assignment
or the ground truth classification are likely to be present.

ArchAIDE developed a novel data generation technique, a new shape representation
scheme, an original reweighting method to deal with a large set of compounding challenges,
and a real-world cross-modality matching problem. ArchAIDE, thanks to the innovations
built up, provides a real-world scenario working application and a case study of deep
learning applied to real-world data where the “sim2real domain shift” is broad, and most
conventional assumptions are widely disrupted.

Finally, ArchAIDE has demonstrated that it may be used for a variety of pottery
types if the necessary comparative data can be gathered (and potentially other artefact
types as well). This will allow maintaining the system as fully operational and useful
to archaeologists; new catalogues must be added into the reference database, as well
as training datasets for having more recognisable ceramic classes. From the end of the
project (May 2019), the MAPPALab, a research unit of the University of Pisa, pursued
this goal (Figure 12). In this period, decoration and types of Maiolica Arcaica (a medieval
tin-glazed ware) produced in Pisa were added. At this moment, all the data are available
to the users as a comparative collection. In the next months, the data collected will
be used to train two specific neural networks and potentially test their performances.
Bronze Age pottery coming from central Italy and Roman Common ware are now being
implemented by a research team composed of researchers from the Museo delle Civiltà
in Rome, the University of Cassino, the Deutsches Archäologisches Institut in Rome,
and the Italian General Directorate for Education, Research and Cultural Institutes of
the Ministry for Cultural Heritage and Activities and Tourism. These collections will
be available to users in the next months. Work on Bronze Age pottery represents an
opportunity and a challenge for ArchAIDE. The recognition algorithms were developed
with standardised pottery productions such as Terra Sigillata, benefiting from a long
tradition in classification and analysis [49]. Working with Bronze Age pottery means
stress-testing the algorithms to demonstrate that they can also work thoroughly with less
standardised pottery productions common in other historical periods than the Roman
period and non-Mediterranean archaeology. This could bring to an overall improvement,
broader collaboration, and implementation of the ArchAIDE system.
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