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A B S T R A C T   

Pottery is of fundamental importance for understanding archaeological contexts. However, recognition of ce
ramics is still a manual, time-consuming activity, reliant on analogue catalogues created by specialists, held in 
archives and libraries. The ArchAIDE project worked to streamline, optimise, and economise the mundane as
pects of these processes, using the latest automatic image recognition technology, while retaining key decision 
points necessary to create trusted results. The project has developed two complementary machine-learning tools 
to propose identifications based on images captured on site. One method relies on the shape of the fracture 
outline of a sherd; the other is based on decorative features. For the outline-identification tool, a novel deep- 
learning architecture was employed, integrating shape information from points along the inner and outer sur
faces. The decoration classifier is based on relatively standard architectures used in image recognition. In both 
cases, training the classifiers required tackling challenges that arise when working with real-world archaeo
logical data: the paucity of labelled data; extreme imbalance between instances of the different categories; and 
the need to avoid neglecting rare types and to take note of minute distinguishing features of some forms. The 
scarcity of training data was overcome by using synthetically-produced virtual potsherds and by employing 
multiple data-augmentation techniques. A novel way of training loss allowed us to overcome the problems 
caused by under-populated classes and non-homogeneous distribution of discriminative features.   

1. Introduction 

Pottery is the most common type of excavated artefact, and its 
identification permits the understanding of the chronology, function, 
and importance of archaeological contexts. This identification is based 
on the archaeologist’s domain knowledge and is usually made by 
matching potsherds to exemplars in catalogues of archaeological ty
pologies. These catalogues contain, for each type, a standardised sketch 
of the complete vessel and sometimes a few photos. While not seeking to 
replace the knowledge and expertise of specialists, the ArchAIDE project 
worked to optimise and economise identification processes, developing 
a new system that streamlines the practice of pottery recognition in 
archaeology, using the latest automated image recognition technology. 
At the same time, archaeologists remained at the heart of the decision- 
making process within the identification workflow. Specifically, Arch
AIDE worked to support the essential classification and interpretation 
work of archaeologists (during both fieldwork and post-excavation 

analysis) with an innovative app for tablets and smartphones. The 
collaborative work of the archaeological and technical partners created 
a pipeline where potsherds are photographed, their characteristics 
compared against a trained neural network, and the results returned 
with suggested matches from a comparative collection with typical 
pottery types and characteristics. Once the correct type is identified, all 
relevant information for that type is linked to the new sherd and stored 
within a database that can be shared online. 

The goals of the ArchAIDE project have been reported in (Wright and 
Gattiglia, 2018; Anichini et al., 2020) and have been implemented 
through the creation of two distinct neural networks for shape-based and 
appearance-based recognition. The choice of the pottery classes, and, 
consequently, the catalogues to be used for the ArchAIDE project, was 
one of the main issues to be considered to create a system that requires a 
real-world implementation. The decision was made to choose four types: 
amphorae manufactured throughout the Roman world between the late 
3rd century BCE and early 7th century CE; Roman Terra Sigillata 

* Corresponding author. 
E-mail address: francesca.anichini@unipi.it (F. Anichini).  

Contents lists available at ScienceDirect 

Journal of Archaeological Science: Reports 

journal homepage: www.elsevier.com/locate/jasrep 

https://doi.org/10.1016/j.jasrep.2020.102788 
Received 15 July 2020; Received in revised form 10 December 2020; Accepted 22 December 2020   

mailto:francesca.anichini@unipi.it
www.sciencedirect.com/science/journal/2352409X
https://www.elsevier.com/locate/jasrep
https://doi.org/10.1016/j.jasrep.2020.102788
https://doi.org/10.1016/j.jasrep.2020.102788
https://doi.org/10.1016/j.jasrep.2020.102788
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jasrep.2020.102788&domain=pdf


Journal of Archaeological Science: Reports 36 (2021) 102788

2

manufactured in Italy, Spain and South Gaul between the 1st century 
BCE and the 3rd century CE; Majolica produced in Montelupo Fiorentino 
(Italy) between 14th and 18th centuries, and medieval and post- 
medieval Majolica from Barcelona and Valencia (Spain). 

The set of tools the project developed addresses two scenarios: (i) 
when the pottery is undecorated, the identification relies on the geom
etry of the sherd; (ii) if visual patterns, such as colours and decorations, 
are preserved, classification is usually based on those, since they are 
more diagnostic than the shape of the sherd. Preliminary results on 
classification may be found in (Itkin et al., 2019). 

Potential uses of computer vision and machine learning in archae
ology were already proposed in (Van der Maaten et al., 2007) and 
applied to coin classification and to the retrieval of visually-similar 
glassware from a reference collection. Modern methods were used, for 
example, in (Orengo and Garcia-Molsosa, 2019) to detect and survey 
surface potsherds in high-resolution drone images. Detection and clas
sification of whole pottery vessels in images by a prototype system called 
Arch-I-Scan is described in (Tuykin et al., 2018). 

Much of the existing work on automated identification of sherds is 
based on 3D scanning or multi-view reconstruction technologies (Bar
reau et al., 2014; Calin et al., 2012; Kampel and Sablatnig, 2006; Kar
asik, 2010). However, the adoption of such methods is minimal due to 
the challenges of 3D acquisition in the field. The automatic analysis of 
profiles of potsherds has been studied using classical computer vision 
methods, but none is robust enough to be applied automatically on a 
varied set of excavated sherds. The problem of reconstruction from line 
drawing or sketches is classical (e.g. Malik, 1987; Tian et al., 2009; 
Yingze et al., 2009; Xu et al., 2014). 

The complete processing chain for the two classifiers, shape-based 

and decoration-based, are sketched in Figs. 7 and 8. 

1.1. Shape-Based identification 

Since our goal is aiding archaeologists in the field, we forgo multiple 
attempts to extract 3D geometry and rely on the 2D outline of the 
fracture surface of the sherd as the source of shape information. We 
tackle the task of classifying the outline of a potsherd based on a single 
image of it, as depicted in Fig. 1(a). After marking the outline in a semi- 
automatic way and determining the scale using a ruler (Fig. 1(b)), our 
AI-powered mobile app suggests an identification in the form of a list of 
archaeological types, ranked by their relevance to the pictured potsherd. 

A major challenge in building the necessary AI tools is the lack of 
sufficient real-world samples to train neural networks. Furthermore, the 
variability in the dataset would still cover only a small fraction of the 
space of possible sherds. Instead, we define each class by one or more 2D 
sketches of the profile of the complete vessel; see Fig. 1(c). Whereas the 
sketch describes the geometry of the profile of the entire vessel, an 
excavated sherd is a relatively small piece of the original, containing 
very limited information regarding the shape as a whole. 

The outline of the fracture is a consequence of both the geometry of 
the pottery and the random breakage process. On the dataset side, we 
reconstruct the 3D pottery by rotating the profile of the vessel (Fig. 1(d)) 
and shatter it to derive synthetic sherds (Fig. 1(e)). We adopt a way to 
circumvent the computation overhead of 3D reconstruction and instead 
obtain the synthetic fracture surfaces (Fig. 1(f)) efficiently. 

To identify outlines, we train a network that supports the unique 
characteristics of archaeological outlines, including the need to separate 
between the inner outline and the outer outline of the sherd, the 

Fig. 1. An illustration of the archaeological data. (a) An image of a sherd positioned to show the fracture surface, with a reference scale ruler in the background. (b) A 
traced fracture outline overlaid over the source image. Green is the outer profile; red is the inner profile; black is for break lines that are ignored by the algorithm. (c) 
An archaeological sketch as it appears in a catalogue. One or more sketches define a class of pottery. (d) A 3D computer graphics vessel obtained by rotating the 
catalogue sketch. (e) A synthetic sherd obtained by breaking the 3D vessel. (f) A fracture outline obtained directly from the sketch, without the 3D reconstruction and 
shattering process. 
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importance of the order of the points along the outline, the inherent 
noise in the tracing process, and the need to overcome sub-optimal data 
acquisition processes. 

The architecture of our classifier relates to an emerging body of 
work, encoding inputs that are given as sets (Qi et al., 2017; Zaheer 
et al., 2017). It is similar to PointNet (Qi et al., 2017) in that it employs 
pooling in order to obtain a representation that is invariant to the order 
of the elements, following a local computation at each element. It has 
previously been shown (Qi et al., 2017; Zaheer et al., 2017) that, under 
mild conditions, such pooling is the only way to achieve this invariance. 
Recent works on shape classification include PointNet++ (Qi et al., 
2017a), which employs local spatial relations, and PointCNN (Hua et al., 
2018) which applies spatial information to group points prior to aligning 
them spatially to a grid where a convolution can be applied. While 
previous work has mostly been focused on the identification of 3D point 
clouds, we encode a 2D outline and benefit from the information that 
arises from the order of the points along the outline. 

1.2. Decoration identification 

The case in which the pattern information on the face of the artefact 
is informative is much better addressed in the current computer vision 
literature. In this case, we employ a commonly used transfer-learning 
technique in which a neural network that was pre-trained to perform 
visual identification is adapted to the task at hand, using a relatively 
small archaeological training dataset. 

1.3. Challenges and results 

Both in the shape and the decoration methods, we overcame a broad 
range of compounding challenges. These include: (1) the lack of real- 
world data to train on (shape) or a small one (decorations); (2) a par
tial view of the object that is obtained by a random breakage process, 
which presents large variability; (3) a large portion of the sherds, among 
both the synthetic training samples and the captured test samples, are 
almost entirely non-informative; (4) very similar classes, making the 
distinction more challenging and also causing ambiguity in the ground 
truth classification of the test data; and (5) a noisy acquisition process: 
an error-prone process for extracting the outline and obtaining scale 
from the real images (shape), variability in illumination (decorations). 

In addition, to be used by experts, there is an acute need to optimise 
to fit considerations beyond accuracy. For example, most neural 
network loss measures would be prone to sacrificing challenging classes 
to improve the average accuracy across all classes. However, a reference 
tool brings the most value when the identification is less obvious. To 
tackle the heterogeneous and unbalanced nature of the data, we train 
using a novel weighting technique that considers both the error of each 
ground truth class and false positives in each class. The reweighting 
scheme that we use addresses both the difficulty of correctly classifying 
a sample from a given class and the frequency of the current classifi
cation of a sample. 

Our results demonstrate a relatively high recognition rate in the face 
of these challenges. The development was carried out in two phases to 
ensure the validity of our results. In the first, we developed the method 
on one dataset of potsherds of one specific family; in the second, the 
same method, with the same pipeline and (hyper-)parameters, was 
applied to three new datasets. With our Phase I dataset, out of 65 
different classes, the tool can identify—based on images of sherds 
captured with a dedicated mobile app—almost 74% of the sherds within 
the top-10 results. With three additional datasets that were received 
after the completion of our research phase, without any tweaking of the 
pipeline, we reached 81%, 68%, and 60% top-10 accuracy for 65, 98, 
and 94 classes, respectively. Thus, our network may serve as the basis of 
a reliable reference tool for the use of archaeologists in the field, one that 
significantly narrows down the list of relevant classes to be considered 
for each sherd. 

2. Shape-Based identification 

2.1. Synthetic training data 

Generating high-quality data with as much similarity to real data as 
possible is crucial for our training. ArchAIDE process follows the steps 
described next to generate synthetic training data using the sketches 
extracted from the catalogues 

Extraction of the profile from the sketch is done by tracing the edges 
of the profile of the vessel (the left half of Fig. 1(c)). Handles, if present 
in the profile, are removed (Banterle et al., 2017). Finally, the scale is 
extracted from the ruler. A sample result can be seen in Fig. 2(a). A 3D 
model can be obtained by rotating the profile around the vertical axis. 

To generate a fracture directly from the profile, without recon
structing a computationally expensive 3D model, we imagine circles 
going around the vertical (z) axis, for each point in the profile (Fig. 2(b)). 
We then generate a random 3D plane (Fig. 2(c)), and compute the 
intersection of the plane with all the circles, connecting the intersection 
points from the circles along the profile to generate the fracture face 
(Fig. 2(d)). To make the fracture shape more distinctive, we keep the 
random plane almost vertical (Fig. 2). To add further realism to the 
generated fracture, after projecting the fracture back to 2D, we reduce 
its extent to match the dimensions of real potsherds; To do so, we cut the 
resulting polygon using two almost-horizontal lines (Fig. 2(d)). 

Since the drawings are scanned in high resolution to capture as many 
details as possible, artefacts resulting from the printing process may be 
visible (see Fig. 3(a)) and reflected in the traced outline (Fig. 3(b)). To 
avoid learning the artefacts, we simplify the outlines by sampling points 
randomly from each outline, limiting the number by resolution. When 
more points are needed (as training operates on a fixed number of 
points), we duplicate points as necessary. The network employs max- 
pooling, as detailed in Section 3.2, and seems to be able to overcome 
this inconsistency in sampling. 

When photographing potsherds, the fracture must be aligned with 
the image—where the sherd’s vertical axis is aligned with the vertical 
axis of the image, and the fracture surface is kept parallel to the hori
zontal plane—to minimise distortions in the acquired fracture shape. 
Note that an archaeologist has no difficulty in approximating the ver
tical axis z since the ceramic manufacturing process creates shapes with 
dominant circles around z. The ability of the users to properly align the 
vertical axis (aligning both the vertical axis to the rotation axis and the 
fracture surface to the image plane) has been verified in field trials. 
Despite the intuitive ability of users to align the fracture correctly, this 
alignment is inexact, since it is a manual process. For robustness, we 
simulate a small random 3D rotation on each fracture before projecting 
it onto a 2D outline. 

Another concern with regard to data acquisition quality arises from 
the nature of the fieldwork. With one hand operating the camera and 
another hand holding the potsherd, a ruler that is used for inferring scale 
information is often left on the table and not held at the same distance as 
the fracture surface; see Fig. 1(a). This seemingly small difference in 
distance from the camera, when combined with close-range photog
raphy, has been empirically shown to lead to scale computations that 
cause sherds to appear up to 50% larger than their actual size. To ach
ieve robustness to this sort of issue, we also add a random scale factor. 

2.2. Network architecture 

Our OutlineNet is based on PointNet with multiple improvements. 
Unlike PointCNN and Point-Net++, we do not attempt to cluster points 
together dynamically, but rather use the natural ordering of points along 
the outline for enriching the available information at each point with 
more than just its spatial location. 

In our network, we supplement each point with two important pieces 
of information: (1) an annotation whether it is on the inside or outside, 
and (2) the angle of the outline at that point, which gives a rotation- 

F. Anichini et al.                                                                                                                                                                                                                                



Journal of Archaeological Science: Reports 36 (2021) 102788

4

invariant representation of the context around the point. The former is 
categorical; the latter is continuous. To combine them, we took an 
approach we called “group-hot” encoding; to represent d continuous 
values coupled with one categorical value with c options, we use a vector 
representing c groups of d values. To represent group i, we zero out the 
values of all but the ith group and store the d values in that group. 

Previous works construct hierarchies between points to encode 
spatial context for each point (Hua et al., 2018; Qi et al., 2017a). In our 
case, points are ordered, and we instead encode the immediate context 
around each point using angular information by considering, for every 
point, the cosine and sine of the angle formed at this point along the 
outline. Employing a point representation that incorporates both angle 
and location showed little to no benefit (compared to spatial information 
alone). Thus, we employ a multi-pathway architecture to enable 
learning separate features for spatial and angular information. We begin 
with separate branches of multilayer perceptrons (MLPs), one for angle 
data and one for location data. Their outputs are concatenated and fed 
into two perceptron layers. Max pooling is then performed over all 
points to obtain a global feature vector of the same size. Going through 
an additional MLP and a final softmax layer, we obtain output scores for 
the classes. All MLPs, except for the one producing the output score, 
employ ReLU activations. 

3. Decoration-based identification 

The drawings and the colours used to decorate pottery can be 

classified based on the usage of specific colours or their combination, by 
the type of patterns that are being painted, by the areas that are being 
painted, and more. For appearance-based classification, our work was 
mainly carried out on the Majolica of Montelupo pottery. The data 
collection was led by the University of Pisa (UNIPI), using both existing 
images (from archaeological excavations, PhD theses, and more) and 
multiple photography campaigns. Most of the images were collected 
during the Autumn of 2017, with more than 8000 sherds being photo
graphed, covering 67 genres with more than 20 sherds, many of which 
with more than 100 sherds. All the pictures have been classified by 
UNIPI archaeological staff. 

Similar to other applications of computer vision in domains in which 
the data is relatively scarce, we rely on feature extraction from an 
existing neural network to the task at hand. As the base, we use a pre- 
trained version of the ResNet-50 network (He et al., 2016) trained on 
the ImageNet collection (Deng et al., 2009). The network operates on 
RGB colour images after these have all been resized to 224 × 224 pixels. 

In order to utilise features at various levels of abstraction, we 
combine features from multiple levels of depth: while the lower levels 
encode colour and texture, the top layers encode complex patterns that 
are more related to the semantic content of the image. ResNet-50 is 
composed of a sequence of blocks, and we concatenate the features from 
blocks 2–5 in order to obtain one large feature vector, as can be seen in 
Fig. 4. The feature maps from each block is a multidimensional map with 
a varying number of channels. Since we want to be position invariant, 
before this concatenation, we eliminate the spatial information by 

Fig. 2. Sketch processing. (a) The processed sketch with the inner profile, outer profile, and rotation axis. (b) The rotation process. The inner and outer profiles are 
positioned for rotation around the rotation axis. (c) A cutting plane P through the 3D pottery. (d) The complete fracture face. In practice, only one of two sides 
(marked in orange and blue) is present in most excavated sherds. We further cut the top and bottom of the fracture, using two lines, to create a sherd with more 
realistic edges and size. 

Fig. 3. Propagation of artefacts as a function of sampling resolution. (a) A scan of a drawing from the catalogue, depicting only the rim of a vessel and scanned at 
high resolution. Printing artefacts are clearly visible. (b) Accurate tracing of the drawing propagates some of the printing artefacts as rough edges. (c) Fixed-count 
sampling, matching the number of points required to achieve 2 mm resolution on some of the larger potsherds. Due to the sample density, the tracing artefacts are 
still present. (d) A resolution-limited sampling, sampling every 2 mm at the scale of the real pottery. Most artefacts are no longer visible. 
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performing average pooling over the entire spatial extent of each 
channel, resulting in one vector of features from each block. To account 
for the different statistics of the features, we normalise each feature (in 
the concatenated vector) separately to have a mean of 0 and a variance 
of 1 on the training set. 

The concatenated vector contains 3840 features. To this vector, we 
apply a dropout regularisation, a fully connected layer projecting to 
1024 features, followed by a ReLU activation, a second dropout, and a 
projection to the number of classes followed by a softmax operator. Both 
dropout layers employ a high level of drop (80%) in order to increase 
robustness and decrease reliance on specific features. During training, 
we fix the parameters of the ResNet layers that extract the features and 
only train the parameters of the fully connected layers on top of the 
features. 

To fit the images to the expected input dimensions of the ResNet 
model, we scale them to 224 pixels (along the shorter axis) and crop 
them (equally on each side of the longer axis) to obtain a 224x224 
image. To train our network to work with varying amounts of decora
tions/background inside the image, we enrich the original image dataset 
by adding augmented versions of each image: for each image, we scale it 
to four different sizes; on each scaled image, we create three flipped 
versions (unflipped, horizontally flipped and vertically flipped); we crop 
all of those images, leaving just the centre square. Thus, from each 
image, we create 12 images that can go into the neural network, 
increasing the dataset size from around 8000 images to about 100,000 

images. 
In our initial experiments, varying illumination was the most chal

lenging factor in identification. To solve this lack of robustness, we 
simulate different white balance results and various brightness and 
contrast adjustments. This was applied during the generation of the 
training dataset by multiplying the luminosity (“brightness”) of all the 
pixels within each image, using a randomised factor to simulate different 
lighting conditions. To compensate for different white balance setups, 
we additionally apply a similar random multiplicative factor to each 
channel in the image; that is, we multiply each of the red/green/blue 
channels, by a separate random constant factor, to change the ratio 
between colours in the image. 

In addition, the imaging conditioned (background, ruler) varied 
considerably between the collection campaigns and the other sources, 
leading to an inherent bias (as each campaign had different kinds of 
pottery), as can be seen in Fig. 5. To overcome this, we extract the 
foreground of the training images automatically. During testing, the 
GrabCut algorithm (Rother et al., 2004) was used to extract the relevant 
image part. 

4. Loss reweighting 

Most common techniques for combating low-classification accuracy 
introduce weights on the loss expressions of individual samples, with 
higher weights assigned to inputs from classes with low accuracy. While 

Fig. 4. The ResNet-based network for classifying potsherds by their appearance. The ResNet part of the network is frozen, and only the parts operating on the feature 
vectors are being trained. We use a significant dropout to reduce the overfitting that may occur with large feature vectors. 

Fig. 5. Three typical images captured during the photography campaign.  
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the rationale is clear, there is no guarantee that it will make the classifier 
learn anything “meaningful” about the classes. To mitigate this issue, we 
employ a new loss function, dubbed CareLoss, which weights samples 
not just by their true label but also by their predicted label. For each 
sample, the loss has one weight by the true label (assigning higher 
weights for classes with low accuracy) and another weight by the pre
dicted label, assigning higher weights to misclassifications. The second 
weight is aimed at tackling an increase in accuracy, which is accompa
nied by an increase in the number of false positives. 

As it turns out, the new loss function not only increases the unifor
mity of the accuracy among the classes but also increases the overall 
performance on the test set. We attribute this to the fact that during 
testing, the same types of confusions that occur in the training data are 
likely to occur, only more frequently. This loss function was successfully 
applied to both appearance-based and shape-based identification. 

5. Experiments 

5.1. Shape-based identification 

The development of the reference tool was planned as a two-phase 
process, where we first develop the classification algorithm on one 
dataset and then validate it on multiple other datasets for different types 
of pottery. Separation of datasets enables avoiding overfitting due to 
multiple hypotheses testing, thus enabling better confidence in our re
sults. The dataset used in the first phase is made of 435 sketches of Terra 
Sigillata Italica (TSI), grouped into 65 standardised top-level classes, as 
defined in the Conspectus catalogue (Ettlinger et al., 2002). From these 
drawings, we generated class-balanced synthetic data, while reserving 
the outlines of the real-world sherds, to be used exclusively for testing. 
The real-world outlines were extracted from images collected across 
Europe using a dedicated mobile app. 

To obtain the outlines, the user taps with their finger on a touch 
screen, marking the points of the outline and annotating these with side 
information (inner or outer outline). The manual annotations result in 
coarse polygons, thus making the dataset more challenging due to lack 
of fine details, and inaccuracies resulting from a touch-based input. The 
real-world test dataset contains 240 extracted outlines from 29 different 
top-level classes. Nevertheless, we train our classifier on all 65 classes. 
When training our model, OutlineNet’s real-world top-2 classification 
rate was 1.5 times the top-1 classification rate. This indicates that the 
classes are easily confused. Ablation experiments showed that separa
tion of inner and outer outlines, angle information, group-hot encoding, 
and adaptive sampling each add to the overall top-K performance, even 
when changes in the top-1 accuracy were small. Similarly, augmentation 
also contributed to the top-K result, without significant impact on the 
top-1 accuracy. A plausible reason is that all these modifications to the 
model and training, are less meaningful for samples that are carefully 
collected and informative, and mainly impact the accuracy of the lower- 
quality samples. 

This befits its use as a reference tool for domain experts who would 
be happy to consider a short list of results as part of the mandatory 
expert verification but would be discouraged to use a tool that often 
completely omits the correct result. 

Following the first phase development on the Terra Sigillata Italica 
(TSI) dataset, we obtained three additional datasets. The first was an 
additional TSI dataset, collected with the aid of the app. It includes the 
outlines of a further 96 actual sherds not included in our previous 
dataset of real data and belonging to 11 classes previously unseen. Two 
additional datasets, Terra Sigillata Hispanica (TSH) and Terra Sigillata 
South Gaulish (TSSG) were added. These also belong to Terra Sigillata 
pottery but has different geographical origins, manufacturers, set of 
classes, and typology. (There is no intersection in classes between TSI, 
TSH, and TSSG.) 

On the new TSI test set, using the same model from phase I (without 
any retraining/adaptations), the accuracy values obtained are even 

better than the phase I dataset. Additionally, for the datasets using new 
typologies, similar or better accuracies (measured relative to the number 
of classes) were obtained using exactly the same training method, 
without any adaptations. 

5.2. Decoration-based identification 

Experiments with decoration-based identification were carried out 
mainly with Majolica of Montelupo pottery, also in a two-stage process. 
In the first stage, the model was trained on a dataset, and while 
demonstrating promising results, evaluations made using real potsherds 
captured in varying conditions (and not using pictures from the dataset), 
demonstrated poor robustness of the classification process. 

After a thorough ablation process, and as mentioned in section 4, the 
key differentiators in the classification results were found to be varying 
backgrounds and varying lighting conditions. While varying lighting 
conditions could be simulated during training (by augmenting the 
image), removing the background and ruler from the image (as these are 
correlated to specific classes thus generating a bias) was more chal
lenging. After integrating an interactive extraction algorithm (GrabCut) 
to be used in the app, going back to extract the background from 
thousands of images in the dataset was not a reasonable effort. 

After experimenting with multiple options, we developed a heuristic 
to fill the interactive role that is traditionally required in GrabCut. First, 
we collect values along the edges of the image (Fig. 6(b)), and then 
compute the colour-distance of all pixels in the image from the nearest 
edge colour (Fig. 6(c)). Applying dynamic thresholding to obtain two 
islands (Fig. 6(d)), we can now remove the ruler island via simple corner 
symmetry detection, to obtain an input mask for GrabCut. 

This heuristic for background extraction worked well for most, but 
not all images. Nevertheless, retraining the model with the background 
removed automatically and lighting augmentation, produced more 
robust results significantly in the face of varying photography 
conditions. 

6. Results 

6.1. Shape-based identification 

The evaluation of the shape-based identification was done both on 
the captured real-world data (used in the testing phase), and also in an 
end-to-end fashion, with users capturing new photos, annotating them, 
and using the classification algorithm. 

The end-to-end evaluation was done using 381 different pictures of 
sherds of TSI, taken from 42 (out of 65) different types. Most images 
were captured with a smartphone or a tablet (as would be the case on the 
field), with only 25 pictures using a regular camera. The average mobile- 
app top-5 accuracy is 50.8%, and the top-1 accuracy is 18.9%. This is 
slightly lower than 22.0% top-1 accuracy and 57.9% top-5 accuracy 
reported in our evaluation, but these results are still good and usable for 
archaeologists. 

The results reported on the testing data, evaluated in a broader set of 
images, across multiple datasets, are reported below:  

Accuracy TSI (#1) TSI (#2) TSH TSSG 

Top-1 22.0% 30.5% 27.6% 14.5% 
Top-2 32.7% 43.6% 40.6% 25.0% 
Top-5 57.9% 62.8% 58.4% 41.9%  

6.2. Decoration-based identification 

The evaluation of the decoration identification method was done on 
both the mobile and desktop versions, including testing of different 
lighting conditions (as these were a key factor in the classification results 
for the first version). The results for the classification are reported 
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below:  
Accuracy Mobile Performance Desktop Performance 

Top-1 55.2% 51.0% 
Top-5 83.8% 77.2%  

The analysis was conducted on 49 different genres (out of 84) with more 
than 700 images taken on mobile devices (phones and tablets) and more 
than 120 taken with a camera and classified in the desktop app. 

Further results show that the accuracy of appearance-based recog
nition, on both mobile devices and desktop, is not related to the light 
type, being approximately equal with artificial and natural light. 

7. Discuss 

Several lessons were learned. 
A first key lesson was that ArchAIDE has demonstrated the potential 

of using automated image recognition to identify archaeological pottery, 
even if at first glance, the results may appear unbalanced in comparison 
with the large-scale data capturing and the functionality of the algo
rithms. ArchAIDE has implemented original techniques for data gener
ation and augmentation, for the weighting of samples and for line-based 
shape recognition. These are directed towards specific challenges in the 

classification of highly complex data such as pottery fragments, which 
include 3D and 2D information and multiple factors that complicate a 
homogeneous recording. Although the classification validation results 
might not look particularly striking in comparison with other artificial 
intelligence application in archaeology, these are impressive given the 
difficulty of the task at hand and represent a significant advance on the 
road to automated pottery classification. The achieved level of accuracy 
has been calculated on the full number of types or decorations known for 
a pottery class, which also contain very uncommon types or decorations. 
On the contrary, the level of satisfaction of the archaeologists who used 
the application on the field is higher than the raw number of the accu
racy results. This is because the system can recognise all the more 
common types archaeologists found. In the case of Majolica of Mon
telupo, for example, the algorithm identifies with difficulty only the 
decorations realised in a few specimens for a richer client. These are not 
found in archaeological excavations, they are conserved in a museum, 
but their decoration is listed within catalogues. In this case, 83% of the 
accuracy of appearance-based recognition represent the full totality of 
archaeological finds. Moreover, ArchAIDE has also shown that it may be 
used for a variety of pottery types if the necessary comparative data can 
be gathered (and potentially other artefact types as well), as virtually all 
pottery identification relies on recognition based on either the shape or 
decorative elements of a vessel (or both). 

Fig. 6. The process to generate the masks for GrabCut. (a) The input image, (b) the edge pixels we sample for their colours, (c) a measure of the colour distance of 
each pixel from the nearest edge pixel, (d) a threshold to obtain two white patches (sherd and ruler). 

Fig. 7. The process of obtaining the outlines for the classification is described in the above figure. We start with an input picture which is captured using a 
smartphone. The image is then cropped and aligned to align the rotation axis with the vertical axis of the image. Afterwards, the scale is extracted by marking the 
physical distance between two points on the ruler. Finally, the inner and outer outlines are annotated by tapping on the screen to mark the outline points. The 
resulting shape is then classified by our model. 
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The second lesson was the amount of training data necessary for the 
image recognition algorithm to return useful results. In our case, mul
tiple photo campaigns were conducted across the life of the project to 
produce a complete dataset of images for all the ceramic classes under 
study. The photo campaigns aimed to provide a sufficient number of 
images to train the algorithms for both the appearance-based (Majolica 
of Montelupo and Majolica from Barcelona) and the shape-based image 
recognition neural network (Roman amphorae, Terra Sigillata Italica, 
Hispanica and South Gaulish). As not all types were stored in a single 
site, it was necessary to access multiple resources involving more than 
30 different institutions in Italy, Spain, and Austria. To train the shape- 
based neural network was essential to take diagnostic photos of sherd 
profiles, so detailed guidelines were prepared for use by the consortium 
partners and project associates. Finding, classifying, photographing and 
creating digital storage for the necessary sherds was very time- 
consuming, as images of at least ten different sherds for every type 
were needed to provide enough training information for the algorithm. 
It became apparent that not every top-level type and sub-type could be 
represented. In some instances, this was because the type was rare, or 
because sherds of different types were mixed when stored, and it was 
challenging to locate them. This task is a challenge across all forms of 
pottery studies, not just for a digital application like ArchAIDE. Overall, 
3498 sherds were photographed for training the shape-based recogni
tion model. For appearance-based recognition, using every image where 
the decoration was visible, it was possible to collect photos taken for 
different purposes, e.g. graduate or PhD theses, archaeological excava
tions, etc. In these cases, photos were collected, classified, tagged, and 
stored based on the genres of decoration to which they belonged. A 
larger corpus of pictures was collected through photo campaigns in Italy 
and Spain. A total of 13,676 photos were obtained. This resulted in far 
more time and effort spent on digitising the paper catalogues and un
dertaking the enormous photo campaigns to capture the necessary pri
mary data. This effort helped partners understand the importance of 
working together if the humanities wish to take advantage of the many 
machine-learning methods now available. Datasets are small, frag
mented, and rarely optimised for machine-learning applications. 

The third lesson was that it was not reasonable to design an image 
recognition system that could identify pottery using both decoration- 
based and shape-based characteristics. It took considerable effort and 
discussion, but it became clear that it was necessary to separate them, 
developing two different algorithms. From an archaeological point of 

view, this does not represent a problem. If needed, ceramic classes for 
which both shape data and appearance data are available can be rec
ognised using the two different classifiers in order to obtain more 
detailed results. Moreover, the project represents a proof of concept, and 
new experiments could be conducted with other ceramic classes. This 
choice allowed a creative outcome, as separating shape-based recogni
tion allowed the 3D models to be used to create desperately needed 
training data. By “breaking” the models into “virtual sherds” and using 
the sherds to train the shape-based image recognition algorithm, the 
accuracy rate was increased to an acceptable level. 

Finally, archaeological classification is not made purely based on the 
shape or decoration. Additional domain expertise, which is not currently 
captured in our scheme, enables the archaeologist to filter out some 
classes based on the location of the findings, other findings in the 
excavation site, and various other considerations. This by itself is not a 
technological limitation, as this sort of filtering can be implemented on 
top of the class ranking predicted by our reference tool. However, it 
means that the gap in the ability to distinguish potsherds based on their 
shape or decoration, vs human archaeologists, is probably much lower 
than the error rates of our method. 

Another reason to believe that the error rates are probably inflated is 
that the labelling of individual potsherds is gathered from accepted 
labelling that is documented in catalogues and established collections. 
However, in some cases, the exact provenance of the assignment has 
been lost, and the ground truth classification is likely to contain 
mistakes. 

To tackle a real-world cross-modality matching problem that pre
sents a large set of compounding challenges, we conceived of multiple 
innovations, including the design of novel data generation techniques, a 
new shape representation scheme, and an original reweighting method. 
Our work also provides—beyond various technical novelties and a 
working application—a case study of deep learning applied to real- 
world data in a situation where most of the conventional assumptions 
are grossly violated, and the reality gap (“sim2real domain shift”) is 
wide, and the simulation must be done with significant care. 

The method described in this paper is already deployed in the field as 
the main part of an archaeological reference tool. The source code, 
models and data are already made public. 

Fig. 8. The process of obtaining the potsherd images for the classification is described in the above figure. We start with an input picture which is captured using a 
smartphone. The image is then cropped and aligned to remove other potsherds that might be visible in the same image. Afterwards, white balance is performed to 
correct the image colours, and finally, interactive background extraction is performed using the (interactive) GrabCut algorithm. 

F. Anichini et al.                                                                                                                                                                                                                                



Journal of Archaeological Science: Reports 36 (2021) 102788

9

CRediT authorship contribution statement 

Francesca Anichini: Conceptualization, Resources, Writing - orig
inal draft, Writing - review & editing, Supervision, Project administra
tion, Funding acquisition. Nachum Dershowitz: Methodology, 
Software, Writing - review & editing, Supervision. Nevio Dubbini: 
Validation, Formal analysis, Writing - review & editing, Visualization. 
Gabriele Gattiglia: Conceptualization, Resources, Writing - original 
draft, Writing - review & editing, Supervision, Project administration, 
Funding acquisition. Barak Itkin: Methodology, Software, Formal 
analysis, Investigation, Data curation, Writing - review & editing, 
Visualization. Lior Wolf: Conceptualization, Methodology, Software, 
Formal analysis, Writing - review & editing, Supervision, Funding 
acquisition. 

Acknowledgement 

This research was supported by the EU Horizon 2020 grant agree
ment No. 693548. We thank all the members of the ArchAIDE (archaide. 
eu) team. 

References 

Anichini, F., Banterle, F., Buxeda, I Garrigós J., Callieri, M., Dershowitz, N., Diaz 
Lucendo, D., Evans, T., Gattiglia, G., Gualandi, M.L, Hervas, M.A., Itkin, B., Madrid I 
Fernandez, M., Miguel Gascón, E., Remmy, M., Richards, J., Scopigno, R., Vila, L., 
Wolf, L., Wright, H., Zallocco, M., 2020. Developing the ArchAIDE application: A 
digital workflow for identifying, organising and sharing archaeological pottery using 
automated image recognition. Internet Archaeol. 52. https://doi.org/10.1114 
1/ia.52.7. 

Banterle, F., Itkin, B, Dellepiane, M., Wolf, L., Callieri, M., Dershowitz, N., Scopigno, R., 
2017. VASESKETCH: Automatic 3D representation of pottery from paper catalog 
drawings. In: 14th IAPR International Conference on Document Analysis and 
Recognition (ICDAR), 9-15 Nov 2017, Kyoto, Japan, pp. 683–90. https://doi.org/10. 
1109/ICDAR.2017.394. 

Barreau, J.-B., Nicolas, T., Bruniaux, G., Petit, E., Petit, Q., Gaugne, R., Gouranton, V., 
2014. Ceramics fragments digitisation by photogrammetry, reconstructions and 
applications. In: International Conference on Cultural Heritage, EuroMed, Lemessos, 
Cyprus. 

Calin, N., Popescu, S., Popescu, D., Mateescu, R., 2012. Using reverse engineering in 
archaeology: Ceramic pottery reconstruction. J. Autom. Mobile Robot. Intell. Syst. 6 
(2), 55–59. 

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. ImageNet: A large-scale 
hierarchical image database. In: IEEE Conference on Computer Vision and Pattern 
Recognition, Miami, FL, pp. 248–255, doi: 10.1109/CVPR.2009.5206848. 

Ettlinger, E., 2002. Römisch-Germanische Kommission Des Deutschen Archäologischen 
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