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Introduction
Based on the discussions between the mathematical 
team and the archaeological and geological teams, 
an analogy arose between the criteria used for attri-
buting archaeological potential and the criteria used 
for assigning importance to web pages in search en-
gine algorithms.
We will try to make this analogy clear. When deter-
mining archaeological potential, geo-morphological 
and archaeological data are integrated in order to 
assign context, i.e. the traces of human actions or of 
natural events are gradually combined with a sum-
mary interpretation process (activities, groups of 
activities) and a period map of finds is defined that 
allows – through analytical work – the implementa-
tion of a map of archaeological potential for a cer-
tain historical period. Finally, the different historical 
periods are ‘overlapped’ to reach the final result. 
The interpretation process of the context consists in 
achieving a stratigraphic categorisation from a seri-
es of archaeological and geological data, based upon 
the spatial and functional relations among the various 
finds. This process becomes further evident when 

determining the activities and group of activities, and 
also with the construction of the map of potential 
by archaeological period. For example, the erection 
of a column could represent a stratigraphic activity, 
which is deduced from the rests of the column itself, 
from the presence of a base or of nearby flooring. 
These activities, in turn, may result in the definition 
of a group of activities, such as a domus: a number 
of columns, together with floor structures, walls, win-
dows, etc., which are adequately located in relation 
to each other, lead us to deduce the presence of a 
domus. More than one domus, in turn, together with 
dwellings and other structures (e.g. temples, roads 
or landfills, etc.) lead the archaeologist to infer the 
presence of an inhabited settlement. 
The key issue of this analysis from an abstract 
viewpoint – leaving aside, therefore, the know-how 
and experience of the archaeologists and geologists 
– is the identification of the relations that exist among 
the various finds, both in spatial terms (i.e. the loca-
tion in space) and in functional terms (i.e. which is or 
could be their function). In other words, the presen-
ce of a particular find near another that has already 
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been discovered could strengthen or weaken the pro-
bability that they will form a more complex structu-
re, and so strengthen or weaken the archaeological 
potential of the area itself. This is exactly the crite-
ria upon which page ranking algorithms are based, 
whereby each web page attributes importance to the 
web pages it points to (via a link) and, in turn, recei-
ves importance from the web pages it receives a link 
from.
The report is structured as follows: Section 2 will 
briefly describe the two models that are mainly used 
in literature for determining archaeological poten-
tial: the first is based on map algebra, the second 
on regression. Section 3 will present the page rank-
based model. After describing the classic model, we 
will point out the changes that need to be made to 
adapt it to archaeological potential and we will pre-
sent some simulations. Section 4 will introduce an 
alternative model for the determination of archae-
ological potential. This simpler model, based upon 
smoothing techniques, will include a number of si-
mulations, in order to compare it with the page rank-
based model. Finally, we will provide a comparison of 
the various models in section 5 and then present our 
final conclusions.

2. Existing models in literature
2.1 Deductive approach using map algebra
One of the approaches used in literature (probably 
the simplest) to predict archaeological potential con-
sists of a predictive model capable of generating a 
decision rule. The input needed to determine this 
rule may be, for instance, land configuration (plain/
slope), the presence of nearby water sources or soil 
type. These features may be combined into rules 
such as 

)()1()01( Asoilmksourcefromancedistslope ≠∪≥∩≥

in order to predict the presence or absence of an ar-
chaeological site. Variants to this approach may in-
clude assigning ‘weights’ to the different conditions, 
so that more importance is given to some conditions 
and less to others. At the same time, significance 
tests may be used to evaluate whether the proposed 
predictive model may be associated to the presen-
ce of archaeological sites within a certain confidence 
interval. The reader can see (Cumming 1997; Wheatley 
2002) for these kinds of models. 
Models based on these rules are very easy to im-
plement; however, they provide on/off results – for 
example, the presence or absence of an archaeolo-
gical site – and do not go further than simply juxta-
posing a number of easy rules. In other words, they 
do not exploit the power of a mathematical model or 
the computing capabilities of a computer.

2.2 Approach based on regression
Literature also provides another approach for de-

termining archaeological potential (Wheatley, 2002), 
based on the application of linear (or logistic) regres-
sion. This approach arises from the need to reply to 
questions that the above-described method cannot 
answer. For instance:
• How can a predictor influence the model?
• How can continuous quantities instead of discrete 
quantities be predicted?
Linear regression can be used to answer these que-
stions, and is an easy approach, both in terms of its 
implementation and from a mathematical viewpoint. 
Without entering into details, all linear regressions 
produce equations of the following type:

,11 kk xbxbay +++= 
where y is the variable that must be predicted 
(for example the archaeological potential), and   

kxx ,,1   are the inputs of the linear regression. In 

other words, by estimating coefficients kbba ,,, 1 

on the basis of the data available, a y value can be 
found, which will be used for making the prediction. 
Several variants may also be introduced in the re-
gressive models (single or multiple regressions, non-
linear regressions, statistical regressions, etc.). For 
firther details on linear regression, also in relation to 
archaeology, please consult (Shennan 1997; Wescott 
2000).
Although the approaches based on linear regression 
have the benefit of using variables to predict further 
variables, the model they implement is too simple 
and does not take into account the great complexity 
that must be considered when determining archaeo-
logical potential. This is so true that current models 
based on linear (or logistic) regression are often not 
preferred to those based on map algebra.

3. Determination of archaeological 
potential based on page ranking
3.1 Standard page-rank model
This paragraph will describe the general ideas and 
details of the most common mathematical models 
used for attributing a value of importance to web pa-
ges regardless of the value of their content and solely 
on the basis of the interconnections between the pages. 
For greater details please refer to a (Langville 2006).
Let us assume that we have n web pages and that 
they are numbered with integers from 1 to n. It is 
useful to use a directed graph to describe the World-
Wide Web, in which the nodes represent the pages 
available on the Web and the directed edges descri-
be the connections of these pages. More specifically, 
an edge connects node i with node j if page i has a 
link that points to page j. For example, if our WWW is 
made of 3 pages in which page 1 points to page 2 and 
to page 3, page 2 points to page 1, and page 3 points 
to page 2, the graph would be as follows
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A directed graph may be univocally described by 
an adjacency matrix jihH =  of size nn×  in which 

1=jih  if a directed edge connects node i with node j 

(if page i contains a link to page j); otherwise 0=jih  
The adjacency matrix associated to the above graph 
is
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The criterion used to determine the importance of 
the web pages may be summarised as follows: a page 

i that points to other pages, for example  kjj ,,1    
distributes its importance in equal parts to pages  

kjj ,,1  , and therefore gives 1/k of its importance 
to the pages it points to.
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For instance, in the case of the graph in the figure 
we have
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This is simply a problem of eigenvalues and ei-
genvectors formulated in the following manner. If  

Te )1,...,1,1(= , d=He, and D=diag(d), then

,, 1HDMwMw TT −==

where ),...,( 1 n
T www = . This naïve formulation, 

however, leads to a series of technical problems, li-
sted below:

1. What happens if  0=id  for some i? This happens 
when pages do not point to anything. This is not an 
unusual problem, indeed, some pages, such as a 
postscript files, may not have any links. Nodes with 
these features are called dangling nodes.
2. Is there always a solution?
3. Is the solution unique (modulo scal multiples)?
4. Is the solution positive?
5. How can it be computed?
It should be noted that dangling nodes are identi-
fied since they correspond to the lines of H having 
all zero entries. In order to address the problem of 
dangling nodes, a slight modification is made to the 
model. More precisely, the initial matrix of adjacency 

H is replaced with a new matrix Ĥ  which coincides 
with H everywhere apart from the zero lines where 

the entries of  Ĥ  are all equal to 1. From a modelling 
viewpoint, it is as if we were to impartially assume 
that a document that in the model does not quote 
any other document in the web, were to quote all the 
existing documents in the new modified model. The-
refore, it evenly distributes 1/n of its importance to all 

of them. Matrix  Ĥ  is therefore expressed as

TeuHH +=ˆ
where u is the vector with entry 1 in correspon-
dence with the dangling nodes and zero elsewhe-

re. Further below, matrix HDM ˆˆ 1−= , where 

)ˆ(ˆ ddiagD = , eHd ˆˆ =  will be expressed as M.

The answer to question 2 is affirmative: Me=e and, 
therefore, 1 is an eigenvalue; consequently, w is any 
left eigenvector corresponding to the eigenvalue 1. 
To reply to the other questions, we must report some 
classic results of the Perron-Frobenius theory regar-
ding non-negative matrices.

Theorem: Let A be a nn×  matrix with non-negative 
entries. Then, an eigenvalue λ  of A exists such that 

0)( ≥= Aρλ . Also, a right eigenvalue x and left ei-
genvalue y correspond to λ  with non-negative entries. 
Furthermore, if A is irreducible then λ  is simple and 
the eigenvalues x and y have positive entries. Finally, if 
A has positive entries, then λ  is the only eingenvalue of 
maximum module.

According to the Perron-Frobenius theorem, each 
solution has non-negative entries. However, the non-
negativity condition, on its own, does not guarantee 
a unique solution (modulo scalar multiples), whereas 
a condition of irreducibility does. It is easy to con-
struct networks of interconnected pages that have 
a reducible adjacency matrix. Therefore, the model 
thus introduced is still not appropriate. In the case of 
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irreducible and non-negative matrices, other eigen-
values may exist that have the same module of the 
spectral radius. This leads to serious problems from 
an algorithmic viewpoint. In order address these pro-
blems, the matrix M is replaced with the following 
matrix

 
,10,)1( <<−+= γγγ TveMA

where v is an arbitrary vector with negative entries 

such that  1=evT , called personalisation vector, 

and γ  is a parameter, 58.0=γ . is usually chosen. 
Thus, matrix A has positive entries. The solution 

exists, therefore; it is unique, and  )(Aρ  is the only 
eigenvalue of module 1. From a modelling viewpoint, 
it is as if the importance of a page were divided into 
two parts: a γ  fraction is distributed on the basis of 
the links as in the original model, and a 1-γ  comple-
mentary fraction is distributed to all the other pages 
according to a criterion resulting from vector v. If, for 
example, v=(1/n)e, distribution shall be uniform to all 
Web pages.

3.2 Using the page rank model for determining 
archaeological potential
In order to apply a page rank model to the determi-
nation of archaeological potential, we will divide the 
subsurface of the urban area of Pisa into  pnm ××  
three-dimensional cells where the first two coordina-
tes i,j define the items of a horizontal section of the 
land and the third coordinate k defines the deposit 
taken into consideration. The aim, therefore, is to 
assign an archaeological potential to each cell (i,j,k), 

expressed by a real, non-negative number ijkx , by 
i=1...,m, j=1,...,n, k=1,...,p. One of the conditions that 
we would like the solution of our model to meet is 
that 

2121
kkesxx ijkijk ≤≤

The explanation for this property lies in the fact that 
the archaeological potential of each cell (i,j,k) should 
be more appropriately interpreted as the potential 
obtained when digging vertically from the surface down 
to that cell. For this reason, as the excavation goes 
deeper, the archaeological potential increases.
The main change that needs to be made to the page 
rank model in order to adapt it to the determination 
of archaeological potential regards the criterion for 
defining the ‘closeness’ between cells, i.e. for defining 
the influence that every single cell has on the other 
cells. In the classic page rank model, the area of in-
fluence of a web page is defined by the links leaving 
the page itself. When determining the criteria of in-
fluence of the cells, therefore, we will bear in mind 
the following considerations, arising from detailed 

discussions with the archaeological and geological 
teams.

• Building a page rank model in which each node 
of the graph, which corresponds to a cell of coor-
dinates (i,j,k), is identified by an integer r such that  

mnpr ≤≤1 . The number r is determined via lexi-
cographic;

• Creating a matrix NN ×  with N=mnp, )( srhH =  
such that srh  is the part of importance that cell r 
transfers to cell s. The value of  srh is between 0 and 
1;
• Using the archaeological information available (if 
available) for each cell in a twofold manner: on the 
one hand, in a relative manner, to construct the   entri-
es of matrix H that controls the transfer of importan-
ce of the cells, and on the other hand, in an absolute 
manner, giving importance to the specific cell that 
contains an archaeological find;
• The construction of the matrix that controls the 
transfer of importance is carried out on the basis of 
the categories used for classifying the archaeological 
finds. In particular, the category characterises both 
the ‘geometry’ and the values of distribution of im-
portance. For example, a cell that contains finds re-
lating to a road may interest contiguous cells located 
along a line;
• When building matrix H, the normalization condi-

tion 
1

1
=∑

=

N

j
jih

 is mantained, which states that the 
entire importance of a cell is contained in the distri-
bution: importance is neither amplified nor reduced;
• In the second part in which we wish to attribute a 

higher value kd to one (or more) kx  entries of the 
archaeological potential, we may proceed as follows:

o We may force the entry to assume the assi-

gned value. In this case, the system xHxT =  

with condition of normalization 1=∑ ix  and 

condition kk dx =  becomes a linear, non-ho-
mogeneous and over-determined system, with 
more equations than unknowns. It must be tre-
ated, therefore, with least-squares techniques;
o A homogeneous approach may be maintained 
by renouncing matrix normalization (stochasti-
city), i.e. scaling the lines of H with the assigned 
factor. In this case, matrix H is replaced by A=DH,  

),...,( 1 NdddiagD =  and the problem calcula-
tes the Perron vector of A, i.e. the non-negative 

vector x such that TT xAx ρ= , where 0>ρ  
is the spectral radius of A. Indeed, since it is no 
longer stochastic, matrix A may not necessarily 
have spectral radius 1. According to this appro-
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ach, by scaling the rows, we give different weight 
to the importance that each cell distributes to the 
others. It should be observed that the condition 

according to which 
0,1

1
≥=∑

=
ii

N

i
ii dd

, does not 
guarantee that the spectral radius of A remains 1;
o A homogeneous approach may also be maintai-
ned by scaling the columns of H with the assigned 
factor. In this case, matrix H is replaced by A=HD. 
According to this approach, the importance that 
each cell receives is scaled (amplified or compres-
sed);

• Using geological information in a binary manner, 
i.e. considering or excluding cells. Alternatively, using 
a weight between 0 and 1 in a multiplicative manner;
• The condition according to which archaeological po-
tential increases as digging deeper into the ground 
may be implemented in at least two ways:

o by including links in the graph that connect cell 
(i,j,k) with cell (i,j,k+1); thus, the deep cells receive 
more importance than the surface cells;

o adopting the quantities 
∑
=

=
k

h
ijhijk xy

1 , where

ijhx  is the Perron vector of H, as a solution for 
archaeological potential.

3.3 Simulations
Future work to be conducted with the archaeologists, 
after categorisation of the finds, will consist in assi-
gning the distribution and the geometry of the im-
portance values that a find in a cell attributes to the 
other cells. Meanwhile, this paragraph will describe 
several versions of the page rank algorithm adap-
ted to the determination of archaeological potential. 
These algorithms will be implemented in a simplified 
version in order to conduct simulations.
For this reason, we will assume that the model is 
one-dimensional in this report. After numbering the 
cells of the three-dimensional problem from 1 to N, 

let us define matrix jiaA =  of size N such that jia  
is the part of archaeological potential that cell j gives 
to cell i. The entries of A are non-negative and such 

that   1=∑
j

jia , i.e. matrix A is stochastic. Matrix A 
is defined by the information available. The problem 
to be solved, in its non-homogenous formulation, 
therefore, is

∆∈=
=

jbx
xxA

jj ,
 

where ∆  is the set of indices of the cells of which 

we have archaeological potential information and jb  
are the values of this potential. Considering its ho-
mogeneous formulation, instead, the problem assu-
mes one of the two following expressions

xADxxDAx λλ == ,
where λ  is the eigenvalue of maximum module of 
DA and AD, respectively, whereas D is the diagonal 
matrix whose diagonal entries give weight to the ar-
chaeological potential of the corresponding cell. 
Therefore, the non-homogeneus problem is formed 
by an over-determined system that needs to be sol-
ved, for example, with the least-squares technique. If 

we replace the known values of jx  it becomes a linear 
system in N equations and N-d unknowns, where d is 
the cardinality of ∆ . Instead, the homogeneous mo-
del is the solution of an eigenvalue problem. If there 
is no archaeological information, the initial matrix of 

the weights is assumed as being equal to  TeeN ⋅/1 , 
i.e., the matrix of entries all equal to 1/N. The reason 
for this is that, since there is no information, each en-
try gives importance (very negligible since equals 1/N) 
to all the others. This is a more favourable hypothesis 
than assuming the identity matrix as matrix of the 
weights (which would seem more natural), in which 
each item gives importance only to itself. The advan-
tage in choosing the matrix of weights with all entries 
equal to 1/N lies in the fact that the matrix is positive 
and therefore the theorem of Perron-Frobenius is va-
lid, which guarantees the existence and uniqueness 
of solution x. Moreover, since information is missing, 
x is the vector of entries all equal to 1/N (if we norma-
lize the sum to 1). It is therefore reasonable, from a 
modelling viewpoint, for all cells to have archaeolo-
gical potential equal to each other, thus negligible. If 
we had started from an identical matrix, the solution 
would not have been unique and the problem would 
have been inconsistent.
When archaeological information is available, we 
proceed along two levels, as already previously de-
scribed. First, we form matrix A by assigning the value 
of weights with which each cell j distributes its own 
importance to cell i. Then, we assign a value of im-
portance to the find itself via multiplication by a dia-
gonal matrix D which contains, for every entry of the 
diagonal, the value of importance associated to the 
find in the corresponding cell. Multiplication may be 
on the right or on the left of matrix A, depending on 
whether we wish to unload the weight of this value 
on the connections that leave the cells or are recei-
ved by them. Finally, the Perron eigenvalue is found, 
associated to the matrix of weights multiplied (on the 
right or on the left) by the matrix of values of impor-
tance.
We chose n=100 for this simulation and entered fin-
ds in cells 15, 37, 39, 68, with importance, respecti-
vely, of 3, 1.5, 1.7, 2. With regard to distribution of the 
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weights, we simulated the following case 
• the find of cell 15 gives importance to cells 3, 4, 5, 6, 
7, 8 equal to 1/6;
• the find of cell 37 gives importance to cells 45, 47, 
49, 51, 53, 55, 57, 59 equal to 1/8;
• the find of cell 39 gives importance to cells 46, 48, 
50, 52, 54, 56, 58, 61 equal to 1/8;
• the find of cell 68 gives importance to cells 13, 14, 
15, 16, 25 equal to 1/5;

By solving the non-homogeneus and the homoge-
neus problems, the values of archaeological poten-
tial are obtained, as in figure 1, where we have repor-
ted the solutions obtained for the stochastic matrix 
(i.e. without considering the importance of the finds, 
the non-homogeneous problem) and for the left-
multiplication and right-multiplication for the diago-
nal matrix with the values of importance of the finds. 
With regard to the stochastic matrix, the distribution 
of archaeological potential resulting from the simula-
tion is basically distributed according to the weights 
assigned to each cell.
Instead, the situation changes significantly if we 
assign importance to the finds. If we consider left-
scaling – i.e. the case in which the importance of the 
find is ‘loaded’ on the weights received – a general 
increase in potential may be seen, which is higher in 
the areas where the finds have been discovered: the 
difference between the areas with greater archaeo-
logical potential and areas with lower archaeological 
potential is much more pronounced than in the sto-
chastic case. With reference to the second case, ar-
chaeological potential is higher in cells 13, 14, 15, 16, 
25, which receive importance in a more ‘concentra-
ted’ manner from cell 68, which distributes a value of 
importance equal to 2. If we consider right-scaling – 
i.e. the case in which the importance of the find is ‘lo-
aded’ on the weights sent – the iteration between the 
weights and the importance of the finds appears to 
be more significant when assigning final archaeolo-
gical potential. Indeed, with regard to this third case, 
archaeological potential is higher in cell 68, which be-
sides having a value of importance of the find equal 
to 2, distributes its weight in a more ‘concentrated’ 
manner with respect to the other finds.

4. Alternative model
This section will describe an alternative model for the 
determination of archaeological potential starting 
from data available from the excavations and from 
already existing finds. Our aim is to provide a ‘basic 
model’ that is simpler than the page rank-based mo-
del and which can be used to test the goodness of 
the page rank-based method.
This alternative model is not built upon considera-
tions regarding archaeological practice but consists 
of a ‘simple’ approximation of existing data: it is ba-
sed on the principle according to which archaeologi-

cal potential tends to increase by proceeding from a 
point where it is lower to a point where it is higher, 
and vice versa. We used the matlab csaps function, 
which provides an approximation of data by means 
of cubic splines.
We chose n=100 for the simulation and we included 
finds in cells 15, 37, 39, 68, with importance, respecti-
vely, of 3/10, 1.5/10, 1.7/10, 2/10. In order to facilitate 
comparison between the two different methods, the 
cells and the relative importance of the finds were 
the same used for simulation with the page rank-
based models. The solution of the problem given by 
the approximation of the data provided is shown in 
Figure 2.
Since the importance of the find is the only condition 
that counts in this case, smoothing simply constructs 
a curve adapting it to the points in which the values 
(of importance) are known. Actual smoothing was 
used for this simulation (this possibility can be modu-
lated by means of a Matlab csaps function parame-
ter), not interpolation, in order to assume the values 
of importance of the find (which will be assigned by 
the archaeological-geological team) and which may 
be subject to an error.

5. Comparison between models and 
conclusions
In this final section, we will compare the different mo-
dels used, those based on the page rank model and 
those on smoothing. This comparison will be carried 
out since we are convinced that the models existing 
in literature – based on map algebra or regression – 
are not appropriate for determining archaeological 
potential as envisaged for the MAPPA project, for the 
reasons already mentioned in the section regarding 
existing literature. In order to compare the various 
models we will refer to figure 3, which reports the 
simulations carried out in the previous sections.
The first main difference between the smoothing-
based model and page-rank based model consists in 
the possibility to ‘distribute’ the importance of a cell 
to other cells, which is possible only in the page rank-
based model. As already pointed out, this allows us 
to assign a certain ‘probability of importance’ in cells 
where there have been no finds. This is not possible 
in the smoothing-based process – nor in the models 
quoted in literature such as the map algebra or linear 
regression models. Indeed, if we observe the figure, it 
is possible to notice how the smoothing-based model 
(green curve) concentrates the archaeological poten-
tial only in the areas surrounding the finds, whereas 
the page rank-based models concentrate the archae-
ological potential also around the cells which acquire 
importance from the cells containing the finds.
Another important difference regards the essentially 
relative nature of the page rank-based model, com-
pared to the essentially absolute nature of the smo-
othing-based model. In the page rank-based model, 
in addition to the weights – which represent the por-
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tion of importance that each cell distributes to the 
other cells – we assigned an importance to each find 
by attributing a value to it which actually represen-
ted importance. This value, however, is not absolute 
but relative with respect to the values assigned to the 
other finds. Instead, in the smoothing-based model, 
the first problem to be addressed is the assignment 
of an absolute value for the potential of each cell, 
where known. Besides representing an additional 
evaluation to be carried out compared to the page 
rank-based model, it is also not particularly correct 
in theoretical and/or general terms. In fact, archae-
ological potential – together with characteristics that 
contribute to its determination (such as density of 
finds, rarity of finds) – is per se related to the area 
under examination and to the area’s size.
 

5.1 Conclusions
In conclusion, we have presented two different mo-
dels for estimating archaeological potential starting 
from already-discovered finds. We believe that exi-
sting models in literature, based mainly on map al-
gebra and regression, are not suitable due to their 
extreme simplicity.
The preliminary work to be carried out in order to 
test these models on real data will consist in asso-
ciating a ‘distribution of importance’ to each catego-
ry of finds indicated by the archaeological team: the 
‘distribution of importance’ will contain the informa-

tion that is provided by each find about what could 
be discovered nearby. Finally, geological information 
– which will be considered in a binary manner – was 
not included in the simulations since implementation 
of this information at modelling level is immediate.
We will focus our attention on the page rank-based 
model because this model allows us to take into 
consideration a series of characteristics that follow 
the practical methods used by archaeologists for de-
termining archaeological potential. The smoothing-
based model, instead, which only considers finds 
without ‘distributing’ their importance, will be used 
for comparison purposes. We have already pointed 
out the advantages of the page-rank based models 
but we believe that they are much greater than ini-
tially highlighted in this phase. For example, the page 
rank model will be implemented considering firstly 
the finds in a single period and then ‘summing’ all the 
various periods, and bearing in mind the different 
interactions that finds belonging to diverse periods 
may have. We must also consider that the ‘distribu-
tion’ of importance may be at the level of cells but 
also of objects ( groups of cells), i.e. at various levels 
of complexity. 

Fig.1 Estimates of archaeological potential as obtained from page rank-based models.
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Fig.2 Estimate of archaeological potential obtained with smoothing and implemented by the matlab csaps function.

Fig.3 Estimate of archaeological potential obtained with all four models implemented
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